Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Clin Transplant ; : e15045, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20236040

ABSTRACT

The advent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in China at the end of 2019 has developed into a global outbreak, and COVID- 19 is an ongoing major public health issue. During the pandemic, transplant programs had to devise strategies to deal with the possibility of COVID-19-positive donors and recipients. We describe the case of a heart transplant recipient who tested positive with the SARS- CoV2 swab upon admission to our Unit of Cardiac Surgery when a suitable donor became available. Given his clinical status of end-stage heart failure and the absence of imaging and clinical signs suggestive of COVID-19, and his having been vaccinated with three doses, we decided to proceed with the transplant.

3.
Antibiotics (Basel) ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2292039

ABSTRACT

BACKGROUND: Antimicrobial and diagnostic stewardship (AS/DS) principles are crucial for the management of multidrug-resistant organisms (MDROs) infections. We evaluated the impact of a pro-active Infectious Disease (ID) consultation on the mortality risk of patients during an MDROs outbreak in a COVID-19 hospital. METHODS: A quasi-experimental study was performed in a dedicated COVID-19 hospital, including patients with suspected/confirmed infection and/or colonization by MDROs, which were managed as follows: (i) according to the standard of care during the pre-phase and (ii) in collaboration with a dedicated ID team performing a pro-active bedside evaluation every 48-72 h in the post-phase. RESULTS: Overall, 112 patients were included (pre-phase = 89 and post-phase = 45). The AS interventions included the following: therapy optimization (33%), de-escalation to narrow the spectrum (24%) or to lessen toxic drugs (20%), and discontinuation of antimicrobials (64%). DS included the request of additional microbiologic tests (82%) and instrumental exams (16%). With the Cox model, after adjusting for age, sex, COVID-19 severity, infection source, etiological agents, and post-phase attendance, only age predicted an increased risk of mortality, while attendance in the post-phase resulted in a decreased risk of mortality. CONCLUSIONS: Implementation of AS and DS intervention through a pro-active ID consultation may reduce the risk of 28-day mortality of COVID-19 patients with MDROs infections.

4.
J Cardiovasc Dev Dis ; 10(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2225346

ABSTRACT

COVID-19 has threatened the capability of receiving and allocating patients in emergency departments (EDs) all over the world. This is a retrospective cohort study to explore the role of a simple procedure like an ECG to screen for the severity of COVID-19 on admission to the ED. For this study, 548 consecutive patients were enrolled in a multicenter international registry and stratified upon ECG on admission with a simple distinction between normal vs. abnormal rhythm. Among patients in the abnormal ECG group were those with heart rates higher than 100 beats per minute and/or atrial fibrillation. Survival in patients with normal ECG rhythm was deemed below 75% after 58 days and then stabilized, while survival in patients with abnormal ECG rhythm was deemed below 75% after 11 days and below 50% after 21 days. A multivariate analysis including abnormal rhythm, gender, age, diabetes, obesity, respiratory failure during hospitalization, heart failure during hospitalization, and abnormal rhythm was an independent predictor of death (HR 7.20 95% CI 3.63-14.28, p < 0.01). This finding, if confirmed in large prospective studies, is promising for identifying a cheap and simple procedure for patients in need of a closer look.

5.
Crit Care ; 26(1): 363, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2139382

ABSTRACT

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) require respiratory support with invasive mechanical ventilation and show varying responses to recruitment manoeuvres. In patients with ARDS not related to COVID-19, two pulmonary subphenotypes that differed in recruitability were identified using latent class analysis (LCA) of imaging and clinical respiratory parameters. We aimed to evaluate if similar subphenotypes are present in patients with COVID-19-related ARDS. METHODS: This is the retrospective analysis of mechanically ventilated patients with COVID-19-related ARDS who underwent CT scans at positive end-expiratory pressure of 10 cmH2O and after a recruitment manoeuvre at 20 cmH2O. LCA was applied to quantitative CT-derived parameters, clinical respiratory parameters, blood gas analysis and routine laboratory values before recruitment to identify subphenotypes. RESULTS: 99 patients were included. Using 12 variables, a two-class LCA model was identified as best fitting. Subphenotype 2 (recruitable) was characterized by a lower PaO2/FiO2, lower normally aerated lung volume and lower compliance as opposed to a higher non-aerated lung mass and higher mechanical power when compared to subphenotype 1 (non-recruitable). Patients with subphenotype 2 had more decrease in non-aerated lung mass in response to a standardized recruitment manoeuvre (p = 0.024) and were mechanically ventilated longer until successful extubation (adjusted SHR 0.46, 95% CI 0.23-0.91, p = 0.026), while no difference in survival was found (p = 0.814). CONCLUSIONS: A recruitable and non-recruitable subphenotype were identified in patients with COVID-19-related ARDS. These findings are in line with previous studies in non-COVID-19-related ARDS and suggest that a combination of imaging and clinical respiratory parameters could facilitate the identification of recruitable lungs before the manoeuvre.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Latent Class Analysis , Retrospective Studies , COVID-19/complications , Respiratory Distress Syndrome/diagnostic imaging , Positive-Pressure Respiration/methods
6.
Diagnostics (Basel) ; 12(9)2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2005961

ABSTRACT

BACKGROUND: Quantitative radiological scores for the extent and severity of pulmonary infiltrates based on chest radiography (CXR) and computed tomography (CT) scan are increasingly used in critically ill invasively ventilated patients. This study aimed to determine and compare the prognostic capacity of the Radiographic Assessment of Lung Edema (RALE) score and the chest CT Severity Score (CTSS) in a cohort of invasively ventilated patients with acute respiratory distress syndrome (ARDS) due to COVID-19. METHODS: Two-center retrospective observational study, including consecutive invasively ventilated COVID-19 patients. Trained scorers calculated the RALE score of first available CXR and the CTSS of the first available CT scan. The primary outcome was ICU mortality; secondary outcomes were duration of ventilation in survivors, length of stay in ICU, and hospital-, 28-, and 90-day mortality. Prognostic accuracy for ICU death was expressed using odds ratios and Area Under the Receiver Operating Characteristic curves (AUROC). RESULTS: A total of 82 patients were enrolled. The median RALE score (22 [15-37] vs. 26 [20-39]; p = 0.34) and the median CTSS (18 [16-21] vs. 21 [18-23]; p = 0.022) were both lower in ICU survivors compared to ICU non-survivors, although only the difference in CTSS reached statistical significance. While no association was observed between ICU mortality and RALE score (OR 1.35 [95%CI 0.64-2.84]; p = 0.417; AUC 0.50 [0.44-0.56], this was noticed with the CTSS (OR, 2.31 [1.22-4.38]; p = 0.010) although with poor prognostic capacity (AUC 0.64 [0.57-0.69]). The correlation between the RALE score and CTSS was weak (r2 = 0.075; p = 0.012). CONCLUSIONS: Despite poor prognostic capacity, only CTSS was associated with ICU mortality in our cohort of COVID-19 patients.

7.
Crit Care Med ; 48(12): e1332-e1336, 2020 12.
Article in English | MEDLINE | ID: covidwho-1895840

ABSTRACT

OBJECTIVES: Clinical observation suggests that early acute respiratory distress syndrome induced by the severe acute respiratory syndrome coronavirus 2 may be "atypical" due to a discrepancy between a relatively unaffected static respiratory system compliance and a significant hypoxemia. This would imply an "atypical" response to the positive end-expiratory pressure. DESIGN: Single-center, unblinded, crossover study. SETTING: ICU of Bari Policlinico Academic Hospital (Italy), dedicated to care patients with confirmed diagnosis of novel coronavirus disease 2019. PATIENTS: Eight patients with early severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and static respiratory compliance higher than or equal to 50 mL/cm H2O. INTERVENTIONS: We compared a "lower" and a "higher" positive end-expiratory pressure approach, respectively, according to the intervention arms of the acute respiratory distress syndrome network and the positive end-expiratory pressure setting in adults with acute respiratory distress syndrome studies. MEASUREMENTS AND MAIN RESULTS: Patients were ventilated with the acute respiratory distress syndrome network and, subsequently, with the ExPress protocol. After 1 hour of ventilation, for each protocol, we recorded arterial blood gas, respiratory mechanics, alveolar recruitment, and hemodynamic variables. Comparisons were performed with analysis of variance for repeated measures or Friedman test as appropriate. Positive end-expiratory pressure was increased from 9 ± 3.5 to 17.7 ± 1.7 cm H2O (p < 0.01). Alveolar recruitment was 450 ± 111 mL. Static respiratory system compliance decreased from 58.3 ± 7.6 mL/cm H2O to 47.4 ± 14.5 mL/cm H2O (p = 0.018) and the "stress index" increased from 0.97 ± 0.03 to 1.22 ± 0.07 (p < 0.001). The PaO2/FIO2 ratio increased from 131 ± 22 to 207 ± 41 (p < 0.001), and the PaCO2 increased from 45.9 ± 12.7 to 49.8 ± 13.2 mm Hg (p < 0.001). The cardiac index went from 3.6 ± 0.4 to 2.9 ± 0.6 L/min/m (p = 0.01). CONCLUSIONS: Our data suggest that the "higher" positive end-expiratory pressure approach in patients with severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and high compliance improves oxygenation and lung aeration but may result in alveolar hyperinflation and hemodynamic alterations.


Subject(s)
COVID-19/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Aged , Aged, 80 and over , Blood Gas Analysis , Cross-Over Studies , Female , Humans , Male , Middle Aged , Respiratory Mechanics/physiology , SARS-CoV-2
8.
Ultrasound J ; 14(1): 21, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1875024

ABSTRACT

BACKGROUND AND OBJECTIVES: Lung Ultrasound Score (LUS) identifies and monitors pneumonia by assigning increasing scores. However, it does not include parameters, such as inferior vena cava (IVC) diameter and index of collapse, diaphragmatic excursions and search for pleural and pericardial effusions. Therefore, we propose a new improved scoring system, termed "integrated" lung ultrasound score (i-LUS) which incorporates previously mentioned parameters that can help in prediction of disease severity and survival, choice of oxygenation mode/ventilation and assignment to subsequent areas of care in patients with COVID-19 pneumonia. METHODS: Upon admission at the sub-intensive section of the emergency medical department (SEMD), 143 consecutively examined COVID-19 patients underwent i-LUS together with all other routine analysis. A database for anamnestic information, laboratory data, gas analysis and i-LUS parameters was created and analyzed. RESULTS: Of 143 enrolled patients, 59.4% were male (mean age 71 years) and 40.6% female. (mean age 79 years: p = 0.005). Patients that survived at 1 month had i-LUS score of 16, which was lower than that of non-survivors (median 20; p = 0.005). Survivors had a higher PaO2/FiO2 (median 321.5) compared to non-survivors (median 229, p < 0.001). There was a correlation between i-LUS and PaO2/FiO2 ratio (rho:-0.4452; p < 0.001), PaO2/FiO2 and survival status (rho:-0.3452; p < 0.001), as well as i-LUS score and disease outcome (rho:0.24; p = 0.005). In non-survivors, the serum values of different significant COVID indicators were severely expressed. The i-LUS score was higher (median 20) in patients who required non-invasive ventilation (NIV) than in those treated only by oxygen therapy (median 15.42; p = 0.003). The odds ratio for death outcome was 1.08 (confidence interval 1.02-1.15) for each point increased. At 1-month follow-up, 65 patients (45.5%) died and 78 (54.5%) survived. Patients admitted to the high critical ward had higher i-LUS score than those admitted to the low critical one (p < 0.003). CONCLUSIONS: i-LUS could be used as a helpful clinical tool for early decision-making in patients with COVID-19 pneumonia.

10.
Front Med (Lausanne) ; 8: 772056, 2021.
Article in English | MEDLINE | ID: covidwho-1650404

ABSTRACT

Background: The radiographic assessment for lung edema (RALE) score has an association with mortality in patients with acute respiratory distress syndrome (ARDS). It is uncertain whether the RALE scores at the start of invasive ventilation or changes thereof in the next days have prognostic capacities in patients with COVID-19 ARDS. Aims and Objectives: To determine the prognostic capacity of the RALE score for mortality and duration of invasive ventilation in patients with COVID-19 ARDS. Methods: An international multicenter observational study included consecutive patients from 6 ICUs. Trained observers scored the first available chest X-ray (CXR) obtained within 48 h after the start of invasive ventilation ("baseline CXR") and each CXRs thereafter up to day 14 ("follow-up CXR"). The primary endpoint was mortality at day 90. The secondary endpoint was the number of days free from the ventilator and alive at day 28 (VFD-28). Results: A total of 350 CXRs were scored in 139 patients with COVID-19 ARDS. The RALE score of the baseline CXR was high and was not different between survivors and non-survivors (33 [24-38] vs. 30 [25-38], P = 0.602). The RALE score of the baseline CXR had no association with mortality (hazard ratio [HR], 1.24 [95% CI 0.88-1.76]; P = 0.222; area under the receiver operating characteristic curve (AUROC) 0.50 [0.40-0.60]). A change in the RALE score over the first 14 days of invasive ventilation, however, had an independent association with mortality (HR, 1.03 [95% CI 1.01-1.05]; P < 0.001). When the event of death was considered, there was no significant association between the RALE score of the baseline CXR and the probability of being liberated from the ventilator (HR 1.02 [95% CI 0.99-1.04]; P = 0.08). Conclusion: In this cohort of patients with COVID-19 ARDS, with high RALE scores of the baseline CXR, the RALE score of the baseline CXR had no prognostic capacity, but an increase in the RALE score in the next days had an association with higher mortality.

11.
Clin Infect Dis ; 73(11): e4031-e4038, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559750

ABSTRACT

BACKGROUND: Prolonged QTc intervals and life-threatening arrhythmias (LTA) are potential drug-induced complications previously reported with antimalarials, antivirals, and antibiotics. Our objective was to evaluate the prevalence and predictors of QTc interval prolongation and incidences of LTA during hospitalization for coronavirus disease 2019 (COVID-19) among patients with normal admission QTc. METHODS: We enrolled 110 consecutive patients in a multicenter international registry. A 12-lead electrocardiograph was performed at admission, after 7, and at 14 days; QTc values were analyzed. RESULTS: After 7 days, 15 (14%) patients developed a prolonged QTc (pQTc; mean QTc increase 66 ± 20 msec; +16%; P < .001); these patients were older and had higher basal heart rates, higher rates of paroxysmal atrial fibrillation, and lower platelet counts. The QTc increase was inversely proportional to the baseline QTc level and leukocyte count and directly proportional to the basal heart rate (P < .01).We conducted a multivariate stepwise analysis including age, male gender, paroxysmal atrial fibrillation, basal QTc values, basal heart rate, and dual antiviral therapy; age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.00-1.13; P < .05), basal heart rate (OR, 1.07; 95% CI, 1.02-1.13; P < .01), and dual antiviral therapy (OR, 12.46; 95% CI, 2.09-74.20; P < .1) were independent predictors of QT prolongation.The incidence rate of LTA during hospitalization was 3.6%. There was 1 patient who experienced cardiac arrest and 3 with nonsustained ventricular tachycardia. LTAs were recorded after a median of 9 days from hospitalization and were associated with 50% of the mortality rate. CONCLUSIONS: After 7 days of hospitalization, 14% of patients with COVID-19 developed pQTc; age, basal heart rate, and dual antiviral therapy were found to be independent predictors of pQTc. Life-threatening arrhythmias have an incidence rate of 3.6%, and were associated with a poor outcome.


Subject(s)
COVID-19 , Long QT Syndrome , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Electrocardiography , Hospitalization , Humans , Male , Registries , SARS-CoV-2
12.
Diagnostics (Basel) ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1526812

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has been a pandemic challenge for the last year. Cardiovascular disease is the most described comorbidity in COVID-19 patients, and it is related to the disease severity and progression. COVID-19 induces direct damage on cardiovascular system, leading to arrhythmias and myocarditis, and indirect damage due to endothelial dysfunction and systemic inflammation with a high inflammatory burden. Indirect damage leads to myocarditis, coagulation abnormalities and venous thromboembolism, Takotsubo cardiomyopathy, Kawasaki-like disease and multisystem inflammatory syndrome in children. Imaging can support the management, assessment and prognostic evaluation of these patients. Ultrasound is the most reliable and easy to use in emergency setting and in the ICU as a first approach. The focused approach is useful in management of these patients due its ability to obtain quick and focused results. This tool is useful to evaluate cardiovascular disease and its interplay with lungs. However, a detailed echocardiography evaluation is necessary in a complete assessment of cardiovascular involvement. Computerized tomography is highly sensitive, but it might not always be available. Cardiovascular magnetic resonance and nuclear imaging may be helpful to evaluate COVID-19-related myocardial injury, but further studies are needed. This review deals with different modalities of imaging evaluation in the management of cardiovascular non-ischaemic manifestations of COVID-19, comparing their use in emergency and in intensive care.

13.
Am J Trop Med Hyg ; 105(6): 1490-1497, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1478301

ABSTRACT

Lung ultrasound (LUS) can be used to assess loss of aeration, which is associated with outcome in patients with coronavirus disease 2019 (COVID-19) presenting to the emergency department. We hypothesized that LUS scores are associated with outcome in critically ill COVID-19 patients receiving invasive ventilation. This retrospective international multicenter study evaluated patients with COVID-19-related acute respiratory distress syndrome (ARDS) with at least one LUS study within 5 days after invasive mechanical ventilation initiation. The global LUS score was calculated by summing the 12 regional scores (range 0-36). Pleural line abnormalities and subpleural consolidations were also scored. The outcomes were successful liberation from the ventilator and intensive care mortality within 28 days, analyzed with multistate, competing risk proportional hazard models. One hundred thirty-seven patients with COVID-19-related ARDS were included in our study. The global LUS score was associated with successful liberation from mechanical ventilation (hazard ratio [HR]: 0.91 95% confidence interval [CI] 0.87-0.96; P = 0.0007) independently of the ARDS severity, but not with 28 days mortality (HR: 1.03; 95% CI 0.97-1.08; P = 0.36). Subpleural consolidation and pleural line abnormalities did not add to the prognostic value of the global LUS score. Examinations within 24 hours of intubation showed no prognostic value. To conclude, a lower global LUS score 24 hours after invasive ventilation initiation is associated with increased probability of liberation from the mechanical ventilator COVID-19 ARDS patients, independently of the ARDS severity.


Subject(s)
Airway Extubation , COVID-19/pathology , COVID-19/therapy , Lung/pathology , SARS-CoV-2 , Ultrasonography , Aged , Cohort Studies , Female , Humans , Internationality , Male , Middle Aged
14.
Acta Biomed ; 92(4): e2021233, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1395633

ABSTRACT

BACKGROUND: The need to determine prognostic factors that can predict a particularly severe or, conversely, the benign course of COVID-19 is particularly perceived in the Emergency Department (ED), considering the scarcity of resources for a conspicuous mass of patients. The aim of our study was to identify some predictors for 30-day mortality among some clinical, laboratory, and ultrasound variables in a COVID-19 patients population. METHODS: Prospective single-center pilot study conducted in an ED of a University Hospital. A consecutive sample of confirmed COVID-19 patients with acute respiratory failure was enrolled from March 8th to April 15th, 2020. RESULTS: 143 patients were enrolled. Deceased patients (n = 65) were older (81 vs. 61 years, p <0.001), and they had more frequently a history of heart disease, neurological disease, or chronic obstructive pulmonary disease (p-values = 0.026, 0.025, and 0.034, respectively) than survived patients. Troponin I and presepsin had a significant correlation with a worse outcome. Troponin achieved a sensitivity of 77% and a specificity of 82% for a cut-off value of 27.6 ng/L. The presepsin achieved a sensitivity of 54% and a specificity of 92% for a cut-off value of 871 pg/mL. CONCLUSION: In a population of COVID-19 patients with acute respiratory failure in an ED, presepsin and troponin I are accurate predictors of 30-day mortality. Presepsin is highly specific and could permit the early identification of patients who could benefit from more intensive care as soon as they enter the ED. Further validation studies are needed to confirm this result.


Subject(s)
COVID-19 , Biomarkers , Emergency Service, Hospital , Humans , Lipopolysaccharide Receptors , Peptide Fragments , Pilot Projects , Prognosis , Prospective Studies , SARS-CoV-2 , Troponin I
15.
J Clin Med ; 10(12)2021 Jun 16.
Article in English | MEDLINE | ID: covidwho-1273471

ABSTRACT

BACKGROUND: Tracheostomy can be performed safely in patients with coronavirus disease 2019 (COVID-19). However, little is known about the optimal timing, effects on outcome, and complications. METHODS: A multicenter, retrospective, observational study. This study included 153 tracheostomized COVID-19 patients from 11 intensive care units (ICUs). The primary endpoint was the median time to tracheostomy in critically ill COVID-19 patients. Secondary endpoints were survival rate, length of ICU stay, and post-tracheostomy complications, stratified by tracheostomy timing (early versus late) and technique (surgical versus percutaneous). RESULTS: The median time to tracheostomy was 15 (1-64) days. There was no significant difference in survival between critically ill COVID-19 patients who received tracheostomy before versus after day 15, nor between surgical and percutaneous techniques. ICU length of stay was shorter with early compared to late tracheostomy (p < 0.001) and percutaneous compared to surgical tracheostomy (p = 0.050). The rate of lower respiratory tract infections was higher with surgical versus percutaneous technique (p = 0.007). CONCLUSIONS: Among critically ill patients with COVID-19, neither early nor percutaneous tracheostomy improved outcomes, but did shorten ICU stay. Infectious complications were less frequent with percutaneous than surgical tracheostomy.

16.
Antibiotics (Basel) ; 10(6)2021 May 29.
Article in English | MEDLINE | ID: covidwho-1256419

ABSTRACT

Cefiderocol is a new cephalosporin displaying against extensively resistant (XDR) Gram-negative bacteria. We report our experience with cefiderocol-based combination therapies as "rescue" treatments in immunocompromised or critically ill patients or in patients with post-surgical infections who had failed previous regimens. A total of 13 patients were treated from 1 September 2020 to 31 March 2021. In total, 5/13 (38%) patients were classified as critically ill, due to severe COVID-19 lung failure; 4/13 (31%) patients had post-surgical infections and 4/13 (31%) had severe infections in immunocompromised subjects due to solid organ transplantation (2/4) or hematological malignancy (2/4). Overall, 10/13 infections were caused by carbapenem-resistant Acinetobacter baumannii, one by KPC-positive ceftazidime/avibactam-resistant Klebsiella pneumonia and two by Pseudomonas aeruginosa XDR. Based on clinical, microbiological and hematobiochemical evaluation, cefiderocol was associated with different companion drugs, particularly with fosfomycin, high-dose tigecycline and/or colistin. Microbiological eradication was achieved in all cases and the 30-day survival rate was 10/13; two patients died due to SARS-CoV-2 lung failure, whereas one death was attributed to subsequent infections. No recurrent infections within 30 days were reported. Finally, we hereby discuss the therapeutic potential of cefiderocol and the possible place in the therapy of this novel drug.

18.
Crit Care ; 25(1): 74, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090628

ABSTRACT

BACKGROUND: Biomarkers can be used to detect the presence of endothelial and/or alveolar epithelial injuries in case of ARDS. Angiopoietin-2 (Ang-2), soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), P-selectin and E-selectin are biomarkers of endothelial injury, whereas the receptor for advanced glycation end-products (RAGE) reflects alveolar epithelial injury. The aims of this study were to evaluate whether the plasma concentration of the above-mentioned biomarkers was different 1) in survivors and non-survivors of COVID-19-related ARDS and 2) in COVID-19-related and classical ARDS. METHODS: This prospective study was performed in two COVID-19-dedicated Intensive Care Units (ICU) and one non-COVID-19 ICU at Ferrara University Hospital. A cohort of 31 mechanically ventilated patients with COVID-19 ARDS and a cohort of 11 patients with classical ARDS were enrolled. Ang-2, ICAM-1, VCAM-1, P-selectin, E-selectin and RAGE were determined with a bead-based multiplex immunoassay at three time points: inclusion in the study (T1), after 7 ± 2 days (T2) and 14 ± 2 days (T3). The primary outcome was to evaluate the plasma trend of the biomarker levels in survivors and non-survivors. The secondary outcome was to evaluate the differences in respiratory mechanics variables and gas exchanges between survivors and non-survivors. Furthermore, we compared the plasma levels of the biomarkers at T1 in patients with COVID-19-related ARDS and classical ARDS. RESULTS: In COVID-19-related ARDS, the plasma levels of Ang-2 and ICAM-1 at T1 were statistically higher in non-survivors than survivors, (p = 0.04 and p = 0.03, respectively), whereas those of P-selectin, E-selectin and RAGE did not differ. Ang-2 and ICAM-1 at T1 were predictors of mortality (AUROC 0.650 and 0.717, respectively). At T1, RAGE and P-selectin levels were higher in classical ARDS than in COVID-19-related ARDS. Ang-2, ICAM-1 and E-selectin were lower in classical ARDS than in COVID-19-related ARDS (all p < 0.001). CONCLUSIONS: COVID-19 ARDS is characterized by an early pulmonary endothelial injury, as detected by Ang-2 and ICAM-1. COVID-19 ARDS and classical ARDS exhibited a different expression of biomarkers, suggesting different pathological pathways. Trial registration NCT04343053 , Date of registration: April 13, 2020.


Subject(s)
Biomarkers/analysis , Lung Injury/diagnosis , Respiration, Artificial/adverse effects , Aged , Antigens, Neoplasm/analysis , Antigens, Neoplasm/blood , Area Under Curve , COVID-19/blood , COVID-19/prevention & control , Cohort Studies , E-Selectin/analysis , E-Selectin/blood , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Intercellular Adhesion Molecule-1/analysis , Intercellular Adhesion Molecule-1/blood , Lung Injury/blood , Lung Injury/physiopathology , Male , Middle Aged , Mitogen-Activated Protein Kinases/analysis , Mitogen-Activated Protein Kinases/blood , P-Selectin/analysis , P-Selectin/blood , Prospective Studies , ROC Curve , Respiration, Artificial/standards , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Versicans/analysis , Versicans/blood , Vesicular Transport Proteins/analysis , Vesicular Transport Proteins/blood
19.
Respir Res ; 22(1): 16, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1067233

ABSTRACT

BACKGROUND: Some studies investigated epidemiological and clinical features of laboratory-confirmed patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the virus causing coronavirus disease 2019 (COVID-19), but limited attention has been paid to the follow-up of hospitalized patients on the basis of clinical setting and the expertise of clinical management. METHODS: In the present single-centered, retrospective, observational study, we reported findings from 87 consecutive laboratory-confirmed COVID-19 patients with moderate-to-severe acute respiratory syndrome hospitalized in an intermediate Respiratory Intensive Care Unit (RICU), subdividing the patients in two groups according to the admission date (before and after March 29, 2020). RESULTS: With improved skills in the clinical management of COVID-19, we observed a significant lower mortality in the T2 group compared with the T1 group and a significantly difference in terms of mortality among the patients transferred in Intensive Care Unit (ICU) from our intermediate RICU (100% in T1 group vs. 33.3% in T2 group). The average length of stay in intermediate RICU of ICU-transferred patients who survived in T1 and T2 was significantly longer than those who died (who died 3.3 ± 2.8 days vs. who survived 6.4 ± 3.3 days). T CONCLUSIONS: The present findings suggested that an intermediate level of hospital care may have the potential to modify survival in COVID-19 patients, particularly in the present phase of a more skilled clinical management of the pandemic.


Subject(s)
COVID-19/therapy , Clinical Competence , Critical Care , Intensive Care Units , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Female , Hospital Mortality , Humans , Italy , Length of Stay , Male , Middle Aged , Patient Admission , Retrospective Studies , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL